翻訳と辞書
Words near each other
・ Arithmetic for Parents
・ Arithmetic function
・ Arithmetic genus
・ Arithmetic group
・ Arithmetic hyperbolic 3-manifold
・ Arithmetic IF
・ Arithmetic logic unit
・ Arithmetic mean
・ Arithmetic number
・ Arithmetic of abelian varieties
・ Arithmetic overflow
・ Arithmetic progression
・ Arithmetic rope
・ Arithmetic shift
・ Arithmetic surface
Arithmetic topology
・ Arithmetic underflow
・ Arithmetic variety
・ Arithmetic zeta function
・ Arithmetica
・ Arithmetica Universalis
・ Arithmetical hierarchy
・ Arithmetical ring
・ Arithmetical set
・ Arithmetico-geometric sequence
・ Arithmetic–geometric mean
・ Arithmetization of analysis
・ Arithmeum
・ Arithmomania
・ Arithmometer


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Arithmetic topology : ウィキペディア英語版
Arithmetic topology
Arithmetic topology is an area of mathematics that is a combination of algebraic number theory and topology. It establishes an analogy between number fields and closed, orientable 3-manifolds.
==Analogies==
The following are some of the analogies used by mathematicians between number fields and 3-manifolds:〔Sikora, Adam S. "Analogies between group actions on 3-manifolds and number fields." Commentarii Mathematici Helvetici 78.4 (2003): 832-844.〕
#A number field corresponds to a closed, orientable 3-manifold
#Ideals in the ring of integers correspond to links, and prime ideals correspond to knots.
#The field Q of rational numbers corresponds to the 3-sphere.
Expanding on the last two examples, there is an analogy between knots and prime numbers in which one considers "links" between primes. The triple of primes are "linked" modulo 2 (the Rédei symbol is −1) but are "pairwise unlinked" modulo 2 (the Legendre symbols are all 1). Therefore these primes have been called a "proper Borromean triple modulo 2" or "mod 2 Borromean primes".

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Arithmetic topology」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.